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1. The Square Root of Minus One!
If we want to calculate the square root of a negative number, it rapidly
becomes clear that neither a positive or a negative number can do it.

E.g.,
√
−1 6= ±1, since 12 = (−1)2 = +1 .

To find
√
−1 we introduce a new quantity, i, defined to be such that

i2 = −1. (Note that engineers often use the notation j.)

Example 1

(a)
√
−25 = 5i

Since (5i)2 = 52 × i2

= 25× (−1)
= −25 .
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(b)

√
−16

9
=

4
3
i

Since (
4
3
i)2 =

16
9
× (i2)

= −16
9

.

2. Real, Imaginary and Complex Numbers
Real numbers are the usual positive and negative numbers.

If we multiply a real number by i, we call the result an imaginary
number. Examples of imaginary numbers are: i, 3i and −i/2.

If we add or subtract a real number and an imaginary number, the
result is a complex number. We write a complex number as

z = a + ib

where a and b are real numbers.
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3. Adding and Subtracting Complex Num-
bers

If we want to add or subtract two complex numbers, z1 = a + ib and
z2 = c+ id, the rule is to add the real and imaginary parts separately:

z1 + z2 = a + ib + c + id = a + c + i(b + d)
z1 − z2 = a + ib− c− id = a− c + i(b− d)

Example 2

(a) (1 + i) + (3 + i) = 1 + 3 + i(1 + 1) = 4 + 2i

(b) (2 + 5i)− (1− 4i) = 2 + 5i− 1 + 4i = 1 + 9i

Exercise 1. Add or subtract the following complex numbers. (Click
on the green letters for the solutions.)
(a) (3 + 2i) + (3 + i) (b) (4− 2i)− (3− 2i)
(c) (−1 + 3i) + 1

2 (2 + 2i) (d) 1
3 (4− 5i)− 1

6 (8− 2i)
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Quiz To which of the following does the expression

(4− 3i) + (2 + 5i)

simplify?

(a) 6− 8i (b) 6 + 2i
(c) 6 + 8i (d) 9− i

Quiz To which of the following does the expression

(3− i)− (2− 6i)

simplify?

(a) 3− 9i (b) 1− 7i
(c) 1 + 5i (d) 1 + 5i
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4. Multiplying Complex Numbers
We multiply two complex numbers just as we would multiply expres-
sions of the form (x + y) together (see the package on Brackets)

(a + ib)(c + id) = ac + a(id) + (ib)c + (ib)(id)
= ac + iad + ibc− bd

= ac− bd + i(ad + bc)

Example 3

(2 + 3i)(3 + 2i) = 2× 3 + 2× 2i + 3i× 3 + 3i× 2i

= 6 + 4i + 9i− 6
= 13i
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Exercise 2. Multiply the following complex numbers. (Click on the
green letters for the solutions.)
(a) (3 + 2i)(3 + i) (b) (4− 2i)(3− 2i)
(c) (−1 + 3i)(2 + 2i) (d) (4− 5i)(8− 2i)

Quiz To which of the following does the expression

(2− i)(3 + 4i)

simplify?

(a) 5 + 4i (b) 6 + 11i
(c) 10 + 5i (d) 6 + i
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5. Complex Conjugation
For any complex number, z = a+ ib, we define the complex conjugate
to be: z∗ = a− ib. It is very useful since:

z + z∗ = a + ib + (a− ib) = 2a

zz∗ = (a + ib)(a− ib) = a2 + iab− iab− a2 − (ib)2 = a2 + b2

The modulus of a complex number is defined as: |z| =
√

zz∗

Exercise 3. Combine the following complex numbers and their con-
jugates. (Click on the green letters for the solutions.)
(a) If z = (3 + 2i), find z + z∗ (b) If z = (3− 2i), find zz∗

(c) If z = (−1 + 3i), find zz∗ (d) If z = (4− 5i), find |z|

Quiz Which of the following is the modulus of

4− 2i?

(a) 5 + 4i (b) 6 + 11i
(c) 10 + 5i (d) 6 + i
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6. Dividing Complex Numbers
The trick for dividing two complex numbers is to multiply top and
bottom by the complex conjugate of the denominator:

z1

z2
=

z1

z2
=

z1

z2
× z∗2

z∗2
=

z1z
∗
2

z2z∗2

The denominator, z2z
∗
2 , is now a real number.

Example 4

1
i

=
1
i
× −i

−i

=
−i

i× (−i)

=
−i

1
= −i
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Example 5

(2 + 3i)
(1 + 2i)

=
(2 + 3i)
(1 + 2i)

(1− 2i)
(1− 2i)

=
(2 + 3i)(1− 2i)

1 + 4

=
1
5
(2 + 3i)(1− 2i)

=
1
5
(2− 4i + 3i + 6) =

1
5
(8− i)

Exercise 4. Perform the following division: (Click on the green let-
ters for the solutions.)

(a)
(2 + 4i)

i
(b)

(−2 + 6i)
(1 + 2i)

(c)
(1 + 3i)
(2 + i)

(d)
(3 + 2i)
(3 + i)
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Quiz To which of the following does the expression
8− i

2 + i

simplify?

(a) 3− 2i (b) 2 + 3i
(c) 4− 1

2 i (d) 4

Quiz To which of the following does the expression
−2 + i

2 + i

simplify?

(a) −1 (b) 1
5 (−5 + 7i)

(c) −1 +
1
2
i (d) 1

5 (−3 + 4i)
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7. Quiz on Complex Numbers
Begin Quiz In each of the following, simplify the expression and
choose the solution from the options given.

1. (3 + 4i)− (2− 3i)
(a) 3− i (b) 5 + 7i
(c) 1 + 7i (d) 1− i

2. (3 + 3i)(2− 3i)
(a) 6− 8i (b) 6 + 8i
(c) −3 + 3i (d) 15− 3i

3. |12− 5i|
(a) 13 (b)

√
7

(c)
√

119 (d) −12.5

4. (13− 17i)/(5− i)
(a) 13

5 + 17i (b) 3 + i
(c) 3 + 2i (d) 2− 3i

End Quiz
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Solutions to Exercises
Exercise 1(a)

(3 + 2i) + (3 + i) = 3 + 2i + 3 + i

= 3 + 3 + 2i + 2i

6 + 3i

Click on the green square to return
�
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Exercise 1(b) Here we need to be careful with the signs!

4− 2i− (3− 2i) = 4− 2i− 3 + 2i

= 4− 3− 2i + 2i

= 1

A purely real result
Click on the green square to return

�
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Exercise 1(c) The factor of 1
2 multiplies both terms in the complex

number.

−1 + 3i +
1
2
(2 + 2i) = −1 + 3i + 1 + i

= 4i

A purely imaginary result.
Click on the green square to return �
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Exercise 1(d)
1
3
(2− 5i)− 1

6
(8− 2i) =

2
3
− 5

3
i− 8

6
+

2
6
i

=
2
3
− 5

3
i− 4

3
+

1
3
i

=
2
3
− 4

3
− 5

3
i +

1
3
i

= −2
3
− 4

3
i

which we could also write as − 2
3 (1 + 2i).

Click on the green square to return �
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Exercise 2(a)

(3 + 2i)(3 + i) = 3× 3 + 3× i + 2i× 3 + 2i× i

= 9 + 3i + 6i− 2
= 9− 2 + 3i + 6i

= 7 + 9i

Click on the green square to return
�
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Exercise 2(b)

(4− 2i)(3− 2i) = 4× 3 + 4× (−2i)− 2i× 3− 2i×−2i

= 12− 8i− 6i− 4
= 12− 4− 8i− 6i

= 8− 14i

Click on the green square to return
�
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Exercise 2(c)

(−1 + 3i)(2 + 2i) = −1× 2− 1× 2i + 3i× 2 + 3i× 2i

= −2− 2i + 6i− 6
= −2− 6− 2i + 6i

= −8 + 4i

Click on the green square to return �
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Exercise 2(d)

(2− 5i)(8− 3i) = 2× 8 + 2× (−3i)− 5i× 8− 5i× (−3i)
= 16− 6i− 40i− 15
= 16− 15− 6i− 40i

= 1− 46i

Click on the green square to return �
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Exercise 3(a)

(3 + 2i) + (3 + 2i)∗ =
(3 + 2i) + (3− 2i) = 3 + 2i + 3− 2i)

= 3 + 3 + 2i− 2i

= 6

Click on the green square to return
�
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Exercise 3(b)

(3− 2i)(3− 2i)∗ = (3− 2i)(3 + 2i)
= 9 + 6i− 6i− 2i× (2i)
= 9− 4i2

= 9 + 4 = 13

Click on the green square to return
�
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Exercise 3(c)

(−1 + 3i)(−1 + 3i)∗ = (−1 + 3i)(−1− 3i)
= (−1)× (−1) + (−1)(−3i) + 3i(−1) + 3i(−3i))
= 1 + 3i− 3i− 9i2

= 1 + 9 = 10

Click on the green square to return �
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Exercise 3(d)√
(4− 3i)(4 + 3i) =

√
42 + 4× 3i− 3i× 4− 3i× 3i

=
√

16 + 12i− 12i− 9i2

=
√

16 + 9
=

√
25 = 5

Click on the green square to return �
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Exercise 4(a)

(2 + 4i)
i

=
(2 + 4i)

i
× −i

−i

=
(2 + 4i)× (−i)

+1
= (2 + 4i)(−i)
= −2i− 4i2

= 4− 2i

Click on the green square to return
�
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Exercise 4(b)

(−2 + 6i)
(1 + 2i)

=
(−2 + 6i)
(1 + 2i)

× (1− 2i)
(1− 2i)

=
(−2 + 6i)(1− 2i)

1 + 4

=
1
5
(−2 + 6i)(1− 2i)

=
1
5
(−2 + 4i + 6i− 12i2)

=
1
5
(−2 + 10i + 12)

=
1
5
(−2 + 12 + 10i)

=
1
5
(10 + 10i) = 2 + 2i

Click on the green square to return
�
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Exercise 4(c)

(1 + 3i)
(2 + i)

=
(1 + 3i)
(2 + i)

× (2− i)
(2− i)

=
(1 + 3i)(2− i)

4 + 1

=
1
5
(2− i + 6i− 3i2)

=
1
5
(2 + 3 + 5i)

=
1
5
(5 + 5i) = 1 + i

Click on the green square to return �
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Exercise 4(d)

(3 + 2i)
(3 + i)

=
(3 + 2i)
(3 + i)

× (3− i)
(3− i)

=
(3 + 2i)(3− i)

9 + 1

=
1
10

(3 + 2i)(3− i)

=
1
10

(9− 3i + 6i− 2i2)

=
1
10

(9 + 2 + 3i)

=
1
10

(11 + 3i)

Click on the green square to return �
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Solutions to Quizzes
Solution to Quiz:

(4− 3i) + (2 + 5i) = 4− 3i + 2 + 5i

= 4 + 2− 3i + 5i

= 6 + 2i

End Quiz
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Solution to Quiz:

(2− i)(3 + 4i) = 2× 3 + 2× (4i)− i× 3− i× (4i)
= 6 + 8i− 3i− 4i2

= 6 + 5i + 4
= 10 + 5i

End Quiz
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Solution to Quiz:

(2− i)(3 + 4i) = 2× 3 + 2× (4i)− i× 3− i× (4i)
= 6 + 8i− 3i− 4i2

= 6 + 5i + 4
= 10 + 5i

End Quiz
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Solution to Quiz:

(2− i)(3 + 4i) = 2× 3 + 2× (4i)− i× 3− i× (4i)
= 6 + 8i− 3i− 4i2

= 6 + 5i + 4
= 10 + 5i

End Quiz
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Solution to Quiz:

8− i

2 + i
=

8− i

2 + i

2− i

2− i

=
(8− i)(2− i)

22 + 12

=
(8× 2 + 8× (−i)− i× 2− i× (−i))

5

=
1
5

(16− 8i− 2i− 1)

=
1
5

(15− 10i) = 3− 2i

End Quiz
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Solution to Quiz:

−2 + i

2 + i
=

−2 + i

2 + i

2− i

2− i

=
(−2 + i)(2− i)

22 + 12

=
1
5

(−2× 2− 2× (−i) + i× 2 + i× (−i))

=
1
5

(−4 + 2i + 2i + 1)

=
1
5

(−3 + 4i)

End Quiz
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